

AFRL

Development of Combined-Effects Testing at AFRL

Dr. Chad Hunter, U.S. Air Force Research

Laboratory (AFRL/RXNMD)

Co-authors: Mr. David J. Borth*, Dr. Douglas C. Hansen*, Dr. Matthew I. Hartshorne** Mr. Matthew J. Rothgeb*, Mr. Drew M. Sanders*, Dr. Nicholas S. Wilson** *University of Dayton Research Institute, USA **U.S. Air Force Research Laboratory

10 Oct 2023

Aircraft exterior coatings testing (historical)

Prior to 2014: ASTM B117 Salt Fog (2,000 – 3,000 hours)

After 2014: 18+ months of beach exposure

The Past - Shortcomings of pre 2014 and post-2014 Method:

- Too slow and/or doesn't reflect realistic damage modes
- Only assesses response to intentional damage, not ability to withstand typical service conditions
- Static design but added dissimilar metals areas of interest in sample after 2014

The Future - Newly Developed Capability:

• Accelerated Combined-Effects Simulation (ACES) Test Chamber

- <u>Air Handling Unit (Russell)</u>
 - ✓ Temp range -55° C to 120° C (\pm 1° C)
 - ✓ Humidity control (30-100% RH)

- Solution Tanks
 - ✓ Three distinct tanks (200L each)
 - ✓ Can be pumped to fog or spray
 - ✓ Salt water/ Rain

THE AIR FORCE RESEARCH LABORATORY -Distribution A. Approved for public release: distribution unlimited.

- <u>4 Electric Linear Actuators (Parker)</u>
 - ✓ Applies loads from 100 lbf to roughly 3000 lbf
 - ✓ Each actuator can hold 2 CASEE samples

Gas Analyzers (American Ecotech)

✓ 0.5ppb detection limit

✓ Gas control available (bottle)

 \checkmark NO₂, SO₂, and O₃

- 2 Halide Luminaries (Atlas)
 - ✓ Mimics solar spectrum
 - ✓ 750-1600 W/m²
 - ✓ Meets MIL-STD 810, ASTM E 892, and ISO 12097-2

Top-down View of Exposure Area: Fog (left) and Spray Field (right)

Slide 3

Corrosion Assessment Specimen for Environmental Evaluation (CASEE)

- SCCS:
- Multiple load paths complicates analysis
- Higher required applied load
- Higher cost
- Larger footprint
- Larger fixtures required

- CASEE:
- Reasons for Transition to CASEE
- Simplified load paths
- Lower cost to machine and assemble
- Smaller fixture required
- Greater sample throughput

(SCCS) specimen

THE AIR FORCE RESEARCH LABORATORY

Specimen for

Environmental

Evaluation (CASEE)

Simulation of Key West FL Environment in ACES

- Objective: demonstrate that corrosion damage in outdoor environments can be replicated (and eventually accelerated) in a lab environment
- Weather data from weather monitoring stations deployed in Key West collected between 20 Aug 2019 20 Nov 2020
- Temperature, relative humidity, solar irradiance, rainfall, and chloride deposition monitored; ACES chamber controlled to simulate conditions in the environment
- Data from the weather station was averaged into a representative 8- day program that was repeated 11 times to
 result in the same elapsed time as the outdoor exposure; artificial sea water was used to simulate deposition of
 sea spray aerosols (SSA) on the bare metal samples
- Validation via mass loss/pitting characteristics, LUNA Acuity CR sensors at both Key West and in ACES chamber

Translate weather conditions into ACES chamber controls

Results – 90-day Key West simulation in ACES

7075-T6 Pitting

THE AIR FORCE RESEARCH LABORATORY

Experiment/Results – Key West acceleration (3.5 Day Cycle)

Results from Accelerated ACES KW Profile vs 90 Day Key West Exposure

ACES KW101A (11 Cycles)

NRL-KW 90 Day Exposure (3rd Qtr)

ACES KW101A (11 Cycles)

Accelerated KW Profile in ACES (11 Cycles / 38 days) showed **no significant difference** at a 95% confidence interval for both mass loss and pit density on 2024-T3 vs 90-Day exposure at Key West

Coatings flexibility testing

Example of a standard flexibility testing for coatings:

- ASTM D6905 Impact Flexibility of Organic Coatings
 - Tested pre and post artificial weathering
- MIL-PRF-32239 Class 2 (Highly Flexible Coating Systems must be ≥40% elongation for gloss and camo, both pre and post artificial weathering
- Failures are tested with Holiday Detector
- Provides an assessment of impact flexibility which is not a typical damage scenario in service conditions and looks at permanent deformation of coatings vs. dynamic loading, similar to in-service environments

Back Side

Front Side with failure at 60%

DC Holiday Detector

ASTM D2794 (GE Reverse Impact Test) Includes 0.5%, 1%, 2%, 5%, 10%, 20% 40% and 60% elongation

THE AIR FORCE RESEARCH LABORATORY

CASEE Sample Test Matrix

Applied coating systems										
System	Substrate	Pre Clean	Clean / Wash	De-Ox	Conversation Coat	Primer		Primer	Intermediate Primer	Topcoat
A	2024-T3 Bare 0.032" 2024-T3 Bare 0.032" 2024-T3 Bare 0.032"	MEK	Prekote			PPG PR1432GV	Assemble	PPG PR1432GV	NA	PPG CA9311/F36173
В	2024-T3 Bare 0.032" 2024-T3 Bare 0.032" 2024-T3 Bare 0.032"	MEK	Prekote			ANAC HS2118	Assemble	ANAC HS2118	NA	PPG CA9311/F36173
С	2024-T3 Bare 0.032" 2024-T3 Bare 0.032" 2024-T3 Bare 0.032"	MEK	Prekote			PPG CA7233	Assemble	PPG CA7233	NA	PPG CA9311/F36173
D	2024-T3 Bare 0.032" 2024-T3 Bare 0.032" 2024-T3 Bare 0.032"	MEK	Prekote			PPG PR1432GV	Assemble	PPG PR1432GV	PPG CA7233	PPG CA9311/F36173
Image: second						 wo Initial CA Flex test (Tensile loa Both failure 	SEE Tests bending pan ading test (pr ocus on pai l s	Planned els) in lab co ulling panels) nt bridge and	nditions in ACES d gap	Crack Paint Bridge Nircrair Skin Head

THE AIR FORCE RESEARCH LABORATORY

AFRL

Experiment/Results – Custom Flex Test (Laboratory Ambient Conditions)

Cycle information:

- Block 5 10mm \$\$\\$\$ @15 sec flex/relax (34k cycles)
- Block 6 10mm \$\$\\$\$ @1.5 sec flex/relax (141k cycles)

Secondary Cycling (Sys C and B):

• Block 6 – 500k cycles or to failures

Holiday Testing of Fasteners (pinhole detection)

 Testing each fastener for holidays daily both in flex and relaxed positions

Experiment/Results – Custom Flex Test

Fastener location

Results – Custom Flex Test

SYS	Sample #	Displacement	Cycles	Holidays	Cycle to Fail
	Sampla 001	7.5mm displace	209,806	None	N/A
	Sample OUT	10mm displace	196,383	None	N/A
A	Sampla 002	7.5mm displace	209,806	None	N/A
em	Sample 002	10mm displace	196,383	None	N/A
yst	Sampla 005	7.5mm displace	209,806	None	N/A
S	Sample 005	10mm displace	196,383	None	N/A
	Sampla 006	7.5mm displace	209,806	None	N/A
	Sample 000	10mm displace	196,383	Yes, F1	100,465
	Sampla 001	7.5mm displace	209,806	None	N/A
	Sample OUT	10mm displace	556,057	Substrate Fail	556,057
в	Sampla 002	7.5mm displace	209,806	None	N/A
em	Sample 002	10mm displace	556,057	Substrate Fail	556,057
yst	Sampla OOF	7.5mm displace	209,806	None	N/A
Ś	Sample 005	10mm displace	196,383	None	N/A
	Sample 006	7.5mm displace	209,806	None	N/A
	Sample 006	10mm displace	196,383	Yes, F1	166,243

SYS	Sample #	Displacement	Cycles	Holidays	Cycle to Fail	
	Sample 001	7.5mm displace	209,806	None	N/A	
	Sample OUT	10mm displace	407,359	Yes, F2, F3, F4,	377,180	*
c	Commis 002	7.5mm displace	209,806	None	N/A	
em	Sample 002	10mm displace	407,359	Yes, F4	397,313	
yst	Commis 005	7.5mm displace	209,806	None	N/A	
0)	Sample 005	10mm displace	196,383	Yes, F1, F8	146,150	
	Comula 00C	7.5mm displace	209,806	None	N/A	
	Sample 006	10mm displace	196,383	Yes, F1	166,243	
D	Sample OOF	7.5mm displace	209,806	None	N/A	
System	Sample 005	10mm displace	196,383	None	N/A	
	Sample 006	7.5mm displace	209,806	None	N/A	
	Sample 006	10mm displace	196,383	None	N/A	

** First Fail (F2) Detected at 196,383

* Substrate Failed

Test performed in ambient lab conditions using a custom two-point flex tester

- Summary of Results:
 - System C was worst performer, as expected due to less flexible system layup.
 - System B had (one paint bridge) failure
 - **System A** and **D** had none (most flexible systems)

ACES Chamber in Cycle Testing – Temp/Humidity Period

ACES Chamber in Cycle Testing – Fog Period

ACES Chamber in Cycle Testing – Rain Period

ACES Chamber in Cycle Testing – Luminary Period

AFRL

Experiment – ACES test

Initial 90-day Simulation Testing Procedure:

- Each cycle consists of an environmental cycle and a strain cycle
- The environmental cycle is a 3.5 day test to mimic a week in Key West
- The strain cycle is a load profile of 2 high load pulls (beginning and end) and 20 moderate load pulls
- For this test 11 cycles are being ran.
- Holidays are being checked at the end of each cycle.
- Holidays are check on the samples when the samples are relaxed and when the samples are pulled to the high load.

Current Status:

- The test has completed **3992** strain cycles out of **5490**
- The test has completed 8 out of 11 environmental cycles (72.7%)

1100 lbs	Load Profile
650 lbs	

Results – ACES test

Samples Relaxed										
Samples	Rivet 1	Rivet 2	Rivet 3	Rivet 4	Rivet 5	Rivet 6	Rivet 7	Rivet 8	Gap	
558-A1A-013	No	No	No	No	Yes	No	No	No	No	
558-A1D-013	No	Yes								
558-A1B-013	No	Yes								
558-A1C-013	No	Yes								
558-A1C-014	Yes	No	Yes							
558-A1B-014	No	Yes								
558-A1D-014	No	No								
558-A1A-014	No	Yes								

Samples Under Tension									
Samples	Rivet 1	Rivet 2	Rivet 3	Rivet 4	Rivet 5	Rivet 6	Rivet 7	Rivet 8	Gap
558-A1A-013	No	No	No	No	Yes	No	No	No	No
558-A1D-013	No	Yes							
558-A1B-013	No	Yes							
558-A1C-013	No	Yes							
558-A1C-014	Yes	No	Yes						
558-A1B-014	No	Yes							
558-A1D-014	No	Yes							
558-A1A-014	No	Yes							

Summary to Date:

- Holidays Detected with System A and C
- Will continue testing to determine how coating system performance/durability differentiate over time in test
- After initial run loading force and frequency may be increased to induce coating failure showing performance differences between coatings

Conclusions

- Faster, more discerning tests are needed for military aerospace coatings
- AFRL developed a laboratory test capability that can simulate and accelerate inservice conditions including weathering and cycling mechanical loading
- New test specimens were designed to mimic simple aircraft structure with representative materials and processes
 - Objective is to demonstrate the ability of coatings to maintain integrity under test conditions
- Promising results to date; combined-effects testing of coating systems with a wide range of coating flexibility will continue in order to provide a ranking of overall durability

Questions?